3.2.38 \(\int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\) [138]

3.2.38.1 Optimal result
3.2.38.2 Mathematica [C] (verified)
3.2.38.3 Rubi [A] (verified)
3.2.38.4 Maple [B] (verified)
3.2.38.5 Fricas [A] (verification not implemented)
3.2.38.6 Sympy [F]
3.2.38.7 Maxima [F(-2)]
3.2.38.8 Giac [F(-2)]
3.2.38.9 Mupad [F(-1)]

3.2.38.1 Optimal result

Integrand size = 23, antiderivative size = 185 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {19 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 a^{3/2} d}-\frac {13 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {7 \tan (c+d x)}{4 a d \sqrt {a+a \cos (c+d x)}}-\frac {\sec (c+d x) \tan (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {\sec (c+d x) \tan (c+d x)}{a d \sqrt {a+a \cos (c+d x)}} \]

output
19/4*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d-13/4*arc 
tanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d*2^(1 
/2)-1/2*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)-7/4*tan(d*x+c)/a/d/ 
(a+a*cos(d*x+c))^(1/2)+sec(d*x+c)*tan(d*x+c)/a/d/(a+a*cos(d*x+c))^(1/2)
 
3.2.38.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.93 (sec) , antiderivative size = 841, normalized size of antiderivative = 4.55 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {19 \cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {i e^{i c} x}{-1+e^{i c}}-\frac {\log \left (i-\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )}{d}\right )}{2 \sqrt {2} (a (1+\cos (c+d x)))^{3/2}}+\frac {19 \cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {i e^{i c} x}{-1+e^{i c}}+\frac {\log \left (i+\sqrt {2} e^{\frac {1}{2} i (c+d x)}-i e^{i (c+d x)}\right )}{d}\right )}{2 \sqrt {2} (a (1+\cos (c+d x)))^{3/2}}+\frac {13 \cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )}{d (a (1+\cos (c+d x)))^{3/2}}-\frac {13 \cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \log \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )+\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )}{d (a (1+\cos (c+d x)))^{3/2}}-\frac {\cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right )}{2 d (a (1+\cos (c+d x)))^{3/2} \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )-\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )^2}+\frac {\cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right )}{2 d (a (1+\cos (c+d x)))^{3/2} \left (\cos \left (\frac {c}{4}+\frac {d x}{4}\right )+\sin \left (\frac {c}{4}+\frac {d x}{4}\right )\right )^2}+\frac {\cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d (a (1+\cos (c+d x)))^{3/2} \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2}+\frac {\cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-5 \cos \left (\frac {c}{2}\right )+7 \sin \left (\frac {c}{2}\right )\right )}{2 d (a (1+\cos (c+d x)))^{3/2} \left (\cos \left (\frac {c}{2}\right )-\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )-\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )}+\frac {\cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{d (a (1+\cos (c+d x)))^{3/2} \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2}+\frac {\cos ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (5 \cos \left (\frac {c}{2}\right )+7 \sin \left (\frac {c}{2}\right )\right )}{2 d (a (1+\cos (c+d x)))^{3/2} \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {c}{2}+\frac {d x}{2}\right )+\sin \left (\frac {c}{2}+\frac {d x}{2}\right )\right )} \]

input
Integrate[Sec[c + d*x]^3/(a + a*Cos[c + d*x])^(3/2),x]
 
output
(19*Cos[c/2 + (d*x)/2]^3*((I*E^(I*c)*x)/(-1 + E^(I*c)) - Log[I - Sqrt[2]*E 
^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]/d))/(2*Sqrt[2]*(a*(1 + Cos[c + d*x 
]))^(3/2)) + (19*Cos[c/2 + (d*x)/2]^3*(((-I)*E^(I*c)*x)/(-1 + E^(I*c)) + L 
og[I + Sqrt[2]*E^((I/2)*(c + d*x)) - I*E^(I*(c + d*x))]/d))/(2*Sqrt[2]*(a* 
(1 + Cos[c + d*x]))^(3/2)) + (13*Cos[c/2 + (d*x)/2]^3*Log[Cos[c/4 + (d*x)/ 
4] - Sin[c/4 + (d*x)/4]])/(d*(a*(1 + Cos[c + d*x]))^(3/2)) - (13*Cos[c/2 + 
 (d*x)/2]^3*Log[Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4]])/(d*(a*(1 + Cos[c 
 + d*x]))^(3/2)) - Cos[c/2 + (d*x)/2]^3/(2*d*(a*(1 + Cos[c + d*x]))^(3/2)* 
(Cos[c/4 + (d*x)/4] - Sin[c/4 + (d*x)/4])^2) + Cos[c/2 + (d*x)/2]^3/(2*d*( 
a*(1 + Cos[c + d*x]))^(3/2)*(Cos[c/4 + (d*x)/4] + Sin[c/4 + (d*x)/4])^2) + 
 (Cos[c/2 + (d*x)/2]^3*Sin[(d*x)/2])/(d*(a*(1 + Cos[c + d*x]))^(3/2)*(Cos[ 
c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])^2) + (Cos[c/2 + 
 (d*x)/2]^3*(-5*Cos[c/2] + 7*Sin[c/2]))/(2*d*(a*(1 + Cos[c + d*x]))^(3/2)* 
(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2])) + (Cos[c/ 
2 + (d*x)/2]^3*Sin[(d*x)/2])/(d*(a*(1 + Cos[c + d*x]))^(3/2)*(Cos[c/2] + S 
in[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2])^2) + (Cos[c/2 + (d*x)/2 
]^3*(5*Cos[c/2] + 7*Sin[c/2]))/(2*d*(a*(1 + Cos[c + d*x]))^(3/2)*(Cos[c/2] 
 + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]))
 
3.2.38.3 Rubi [A] (verified)

Time = 1.18 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.08, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.696, Rules used = {3042, 3245, 27, 3042, 3463, 27, 3042, 3463, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^3(c+d x)}{(a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^3 \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3245

\(\displaystyle \frac {\int \frac {(8 a-5 a \cos (c+d x)) \sec ^3(c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(8 a-5 a \cos (c+d x)) \sec ^3(c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {8 a-5 a \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3 \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {\int -\frac {2 \left (7 a^2-6 a^2 \cos (c+d x)\right ) \sec ^2(c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{2 a}+\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {\left (7 a^2-6 a^2 \cos (c+d x)\right ) \sec ^2(c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {7 a^2-6 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {\int -\frac {\left (19 a^3-7 a^3 \cos (c+d x)\right ) \sec (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {\left (19 a^3-7 a^3 \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\int \frac {19 a^3-7 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {19 a^2 \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-26 a^3 \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {19 a^2 \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-26 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {19 a^2 \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {52 a^3 \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {19 a^2 \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {26 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {-\frac {38 a^3 \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {26 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {4 a \tan (c+d x) \sec (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {7 a^2 \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {\frac {38 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {26 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{2 a}}{a}}{4 a^2}-\frac {\tan (c+d x) \sec (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

input
Int[Sec[c + d*x]^3/(a + a*Cos[c + d*x])^(3/2),x]
 
output
-1/2*(Sec[c + d*x]*Tan[c + d*x])/(d*(a + a*Cos[c + d*x])^(3/2)) + ((4*a*Se 
c[c + d*x]*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]) - (-1/2*((38*a^(5/2) 
*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (26*Sqrt[2] 
*a^(5/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]]) 
])/d)/a + (7*a^2*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/a)/(4*a^2)
 

3.2.38.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3245
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/( 
a*(2*m + 1)*(b*c - a*d))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + 
f*x])^n*Simp[b*c*(m + 1) - a*d*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x] 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ 
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (Intege 
rsQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 
3.2.38.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(806\) vs. \(2(156)=312\).

Time = 1.81 (sec) , antiderivative size = 807, normalized size of antiderivative = 4.36

method result size
default \(\text {Expression too large to display}\) \(807\)

input
int(sec(d*x+c)^3/(a+cos(d*x+c)*a)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/2*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(104*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/ 
2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)^6*a-76*l 
n(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)* 
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*cos(1/2*d*x+1/2*c)^6*a-76*ln( 
4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a* 
sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*cos(1/2*d*x+1/2*c)^6*a-104*2^(1/ 
2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a)/cos(1/2*d*x+1/2*c)) 
*a*cos(1/2*d*x+1/2*c)^4+28*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)* 
cos(1/2*d*x+1/2*c)^4+76*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*co 
s(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*cos( 
1/2*d*x+1/2*c)^4*a+76*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1 
/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*cos(1/2 
*d*x+1/2*c)^4*a+26*2^(1/2)*ln(2*(2*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+ 
2*a)/cos(1/2*d*x+1/2*c))*a*cos(1/2*d*x+1/2*c)^2-22*cos(1/2*d*x+1/2*c)^2*(a 
*sin(1/2*d*x+1/2*c)^2)^(1/2)*2^(1/2)*a^(1/2)-19*ln(-4/(2*cos(1/2*d*x+1/2*c 
)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*a^(1/2)-2*a))*cos(1/2*d*x+1/2*c)^2*a-19*ln(4/(2*cos(1/2*d*x+1/2*c)+2 
^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*a^(1/2)+2*a))*cos(1/2*d*x+1/2*c)^2*a+2*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2) 
^(1/2)*a^(1/2))/a^(5/2)/cos(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)-2^(1/2...
 
3.2.38.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.63 \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {26 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 19 \, {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (7 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right )}{16 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")
 
output
1/16*(26*sqrt(2)*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt 
(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*si 
n(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1) 
) + 19*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(a)*log((a 
*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)* 
(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) 
- 4*sqrt(a*cos(d*x + c) + a)*(7*cos(d*x + c)^2 + 3*cos(d*x + c) - 2)*sin(d 
*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + 
c)^2)
 
3.2.38.6 Sympy [F]

\[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\sec ^{3}{\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(d*x+c)**3/(a+a*cos(d*x+c))**(3/2),x)
 
output
Integral(sec(c + d*x)**3/(a*(cos(c + d*x) + 1))**(3/2), x)
 
3.2.38.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: Memory limit reached. Please j 
ump to an outer pointer, quit program and enlarge thememory limits before 
executing the program again.
 
3.2.38.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(sec(d*x+c)^3/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 
3.2.38.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^3(c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^3\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int(1/(cos(c + d*x)^3*(a + a*cos(c + d*x))^(3/2)),x)
 
output
int(1/(cos(c + d*x)^3*(a + a*cos(c + d*x))^(3/2)), x)